在这项工作中,研究了来自磁共振图像的脑年龄预测的深度学习技术,旨在帮助鉴定天然老化过程的生物标志物。生物标志物的鉴定可用于检测早期神经变性过程,以及预测与年龄相关或与非年龄相关的认知下降。在这项工作中实施并比较了两种技术:应用于体积图像的3D卷积神经网络和应用于从轴向平面的切片的2D卷积神经网络,随后融合各个预测。通过2D模型获得的最佳结果,其达到了3.83年的平均绝对误差。 - Neste Trabalho S \〜AO InvestigaDAS T \'Ecnicas de Aprendizado Profundo Para a previ \ c {c} \〜ate daade脑电站a partir de imagens de resson \ ^ ancia magn \'etica,Visando辅助Na Identifica \ c {C} \〜AO de BioMarcadores Do Processo Natural de Envelhecimento。一个identifica \ c {c} \〜ao de bioMarcarcores \'e \'util para a detec \ c {c} \〜ao de um processo neurodegenerativo em Est \'Agio无数,Al \'em de possibilitar Prever Um decl 'inio cognitivo relacionado ou n \〜ao \`一个懒惰。 Duas T \'ECICAS S \〜AO ImportyAdas E Comparadas Teste Trabalho:Uma Rede神经卷应3D APLICADA NA IMAGEM VOLUM \'ETRICA E UME REDE神经卷轴2D APLICADA A FATIAS DO PANIAS轴向,COM后面fus \〜AO DAS PREDI \ C {c} \ \ oes个人。 o Melhor ResultAdo Foi optido Pelo Modelo 2D,Que Alcan \ C {C} OU UM ERRO M \'EDIO ABSOLUTO DE 3.83 ANOS。
translated by 谷歌翻译
Real-world robotic grasping can be done robustly if a complete 3D Point Cloud Data (PCD) of an object is available. However, in practice, PCDs are often incomplete when objects are viewed from few and sparse viewpoints before the grasping action, leading to the generation of wrong or inaccurate grasp poses. We propose a novel grasping strategy, named 3DSGrasp, that predicts the missing geometry from the partial PCD to produce reliable grasp poses. Our proposed PCD completion network is a Transformer-based encoder-decoder network with an Offset-Attention layer. Our network is inherently invariant to the object pose and point's permutation, which generates PCDs that are geometrically consistent and completed properly. Experiments on a wide range of partial PCD show that 3DSGrasp outperforms the best state-of-the-art method on PCD completion tasks and largely improves the grasping success rate in real-world scenarios. The code and dataset will be made available upon acceptance.
translated by 谷歌翻译
背景:荧光血管造影表现出非常有希望的结果,可以通过允许外科医生选择最佳灌注组织来减少吻合泄漏。但是,由于存在不同外科医生之间的显着差异,因此对荧光信号的主观解释仍然阻碍了该技术的广泛应用。我们的目的是开发一种人工智能算法,以基于术中荧光血管造影数据将结肠组织分类为“灌注”或“不灌注”。方法:在第三纪转介中心的荧光血管造影视频数据集中对具有重新结构结构的分类模型进行了训练。与结肠的荧光和非荧光段相对应的框架用于训练分类算法。进行了使用训练集未使用的患者的框架进行验证,包括使用相同的设备和使用其他相机收集的数据收集的数据。计算了性能指标,并用于进一步分析输出。根据组织分类确定了决策边界。结果:卷积神经网络已成功地对790名患者进行了1790帧的培训,并在14例患者的24帧中进行了验证。训练集的准确性为100%,验证集为80%。训练集的召回和精度分别为100%和100%,验证集分别为68.8%和91.7%。结论:具有高度准确性的术中荧光血管造影的自动分类是可能的,并且允许自动决策边界识别。这将使外科医生能够标准化荧光血管造影技术。基于Web的应用程序可用于部署该算法。
translated by 谷歌翻译
之前的信仰是贝叶斯的认知核心核心,但许多这些账户不直接测量前锋。更具体地,信仰的初始状态大量影响在更新特定模型时假设假设新信息的利用方式。尽管如此,先前和后部信仰要么从连续参与者行动推断,或者通过贫困手段引发。我们参与者在理论上不可知的方式发挥游戏“Plinko”的一个版本,首先引发个人参与者前瞻。然后直接测量随后的学习和更新参与者信仰。我们表明,参与者持有各种前锋,这些前锋围绕原型概率分布,反过来影响学习。在后续实验中,我们表明,参与者前锋随着时间的推移稳定,更新信仰的能力受到简单环境操纵的影响(即短暂的休息)。该数据揭示了直接衡量参与者信仰的重要性,而不是假设或推断它们在迄今为止的文献中被广泛完成。 Plinko游戏提供了一种灵活和融合的方法,用于检查统计学习和心理模型更新。
translated by 谷歌翻译
Designing experiments often requires balancing between learning about the true treatment effects and earning from allocating more samples to the superior treatment. While optimal algorithms for the Multi-Armed Bandit Problem (MABP) provide allocation policies that optimally balance learning and earning, they tend to be computationally expensive. The Gittins Index (GI) is a solution to the MABP that can simultaneously attain optimality and computationally efficiency goals, and it has been recently used in experiments with Bernoulli and Gaussian rewards. For the first time, we present a modification of the GI rule that can be used in experiments with exponentially-distributed rewards. We report its performance in simulated 2- armed and 3-armed experiments. Compared to traditional non-adaptive designs, our novel GI modified design shows operating characteristics comparable in learning (e.g. statistical power) but substantially better in earning (e.g. direct benefits). This illustrates the potential that designs using a GI approach to allocate participants have to improve participant benefits, increase efficiencies, and reduce experimental costs in adaptive multi-armed experiments with exponential rewards.
translated by 谷歌翻译
Quadruped robots are currently used in industrial robotics as mechanical aid to automate several routine tasks. However, presently, the usage of such a robot in a domestic setting is still very much a part of the research. This paper discusses the understanding and virtual simulation of such a robot capable of detecting and understanding human emotions, generating its gait, and responding via sounds and expression on a screen. To this end, we use a combination of reinforcement learning and software engineering concepts to simulate a quadruped robot that can understand emotions, navigate through various terrains and detect sound sources, and respond to emotions using audio-visual feedback. This paper aims to establish the framework of simulating a quadruped robot that is emotionally intelligent and can primarily respond to audio-visual stimuli using motor or audio response. The emotion detection from the speech was not as performant as ERANNs or Zeta Policy learning, still managing an accuracy of 63.5%. The video emotion detection system produced results that are almost at par with the state of the art, with an accuracy of 99.66%. Due to its "on-policy" learning process, the PPO algorithm was extremely rapid to learn, allowing the simulated dog to demonstrate a remarkably seamless gait across the different cadences and variations. This enabled the quadruped robot to respond to generated stimuli, allowing us to conclude that it functions as predicted and satisfies the aim of this work.
translated by 谷歌翻译
When robots learn reward functions using high capacity models that take raw state directly as input, they need to both learn a representation for what matters in the task -- the task ``features" -- as well as how to combine these features into a single objective. If they try to do both at once from input designed to teach the full reward function, it is easy to end up with a representation that contains spurious correlations in the data, which fails to generalize to new settings. Instead, our ultimate goal is to enable robots to identify and isolate the causal features that people actually care about and use when they represent states and behavior. Our idea is that we can tune into this representation by asking users what behaviors they consider similar: behaviors will be similar if the features that matter are similar, even if low-level behavior is different; conversely, behaviors will be different if even one of the features that matter differs. This, in turn, is what enables the robot to disambiguate between what needs to go into the representation versus what is spurious, as well as what aspects of behavior can be compressed together versus not. The notion of learning representations based on similarity has a nice parallel in contrastive learning, a self-supervised representation learning technique that maps visually similar data points to similar embeddings, where similarity is defined by a designer through data augmentation heuristics. By contrast, in order to learn the representations that people use, so we can learn their preferences and objectives, we use their definition of similarity. In simulation as well as in a user study, we show that learning through such similarity queries leads to representations that, while far from perfect, are indeed more generalizable than self-supervised and task-input alternatives.
translated by 谷歌翻译
and widely used information measurement metric, particularly popularized for SSVEP- based Brain-Computer (BCI) interfaces. By combining speed and accuracy into a single-valued parameter, this metric aids in the evaluation and comparison of various target identification algorithms across different BCI communities. To accurately depict performance and inspire an end-to-end design for futuristic BCI designs, a more thorough examination and definition of ITR is therefore required. We model the symbiotic communication medium, hosted by the retinogeniculate visual pathway, as a discrete memoryless channel and use the modified capacity expressions to redefine the ITR. We use graph theory to characterize the relationship between the asymmetry of the transition statistics and the ITR gain with the new definition, leading to potential bounds on data rate performance. On two well-known SSVEP datasets, we compared two cutting-edge target identification methods. Results indicate that the induced DM channel asymmetry has a greater impact on the actual perceived ITR than the change in input distribution. Moreover, it is demonstrated that the ITR gain under the new definition is inversely correlated with the asymmetry in the channel transition statistics. Individual input customizations are further shown to yield perceived ITR performance improvements. An algorithm is proposed to find the capacity of binary classification and further discussions are given to extend such results to ensemble techniques.We anticipate that the results of our study will contribute to the characterization of the highly dynamic BCI channel capacities, performance thresholds, and improved BCI stimulus designs for a tighter symbiosis between the human brain and computer systems while enhancing the efficiency of the underlying communication resources.
translated by 谷歌翻译
A step-search sequential quadratic programming method is proposed for solving nonlinear equality constrained stochastic optimization problems. It is assumed that constraint function values and derivatives are available, but only stochastic approximations of the objective function and its associated derivatives can be computed via inexact probabilistic zeroth- and first-order oracles. Under reasonable assumptions, a high-probability bound on the iteration complexity of the algorithm to approximate first-order stationarity is derived. Numerical results on standard nonlinear optimization test problems illustrate the advantages and limitations of our proposed method.
translated by 谷歌翻译
Differentiable Architecture Search (DARTS) has attracted considerable attention as a gradient-based Neural Architecture Search (NAS) method. Since the introduction of DARTS, there has been little work done on adapting the action space based on state-of-art architecture design principles for CNNs. In this work, we aim to address this gap by incrementally augmenting the DARTS search space with micro-design changes inspired by ConvNeXt and studying the trade-off between accuracy, evaluation layer count, and computational cost. To this end, we introduce the Pseudo-Inverted Bottleneck conv block intending to reduce the computational footprint of the inverted bottleneck block proposed in ConvNeXt. Our proposed architecture is much less sensitive to evaluation layer count and outperforms a DARTS network with similar size significantly, at layer counts as small as 2. Furthermore, with less layers, not only does it achieve higher accuracy with lower GMACs and parameter count, GradCAM comparisons show that our network is able to better detect distinctive features of target objects compared to DARTS.
translated by 谷歌翻译